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Abstract
Starting from deformed quantum Heisenberg Lie algebras some realizations are
given in terms of the usual creation and annihilation operators of the standard
harmonic oscillator. Then the associated algebra eigenstates are computed
and give rise to new classes of deformed coherent and squeezed states. They
are parametrized by deformed algebra parameters and suitable redefinitions of
them as paragrassmann numbers. Some properties of these deformed states are
also analysed.

PACS numbers: 03.65.Fd, 02.20.Sv, 02.20.Uw, 42.25.Kb

1. Introduction

It is interesting for theoretical and practical reasons to study coherent and squeezed states
associated with the quantum Hopf algebras [1–3]. The Hopf algebra structure of a quantum
algebra provides us with useful technical elements such as the coproduct, for example. In the
case of boson quantum algebras, the special coproduct properties are useful to characterize
multi-particle Hamiltonians [4]. For example, in the case of the Poincaré quantum algebra,
the coproduct has been brought to bear on the study the fusion of phonons [5]. In general,
the concept of deformed quantum Lie algebras found various applications in quantum optics,
quantum field theory, quantum statistical mechanics, supersymmetric quantum mechanics
and some purely mathematical problems. For instance, in the case of the suq(2) algebra,
it has been found that the suq(2) effective Hamiltonians reproduce accurately the physical
properties of the su(2) ⊕ h(2) models [6]. On the other hand, there are some works showing
that quantum algebras are connected with paragrassmann algebras [7, 8]. Paragrassmann
algebras are relevant in the studies of theories that show the necessity of unusual statistic [9],
for instance, the studies of anyons and topological field theories [10, 11].

Now, to associate coherent and squeezed states to a quantum deformed Lie algebra one can
use the algebra eigenstates (AES) technique. The AES associated with a real Lie algebra have
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been defined as the set of eigenstates of an arbitrary complex linear combination of generators
of the considered algebra [12]. The AES associated with a quantum real deformed Lie algebra
can be defined in a similar way. Indeed, if Ak(q), k = 1, 2, . . . , n denote the generators of this
deformed algebra in a given representation, parametrized by the set of deformation parameters
q, then the AES associated with this deformed algebra will be given by the set of solutions of
the eigenvalue equation

n∑
k=1

αkAk(q)|ψ〉 = λ|ψ〉, αk, λ ∈ C. (1)

The purpose of this work is to compute the AES of the deformed quantum Heisenberg
Lie algebras [13], obtained by applying the R-matrix methods [1], and find new classes of
deformed harmonic oscillator coherent and squeezed states. We will see that these states will
be new deformations of the standard coherent and squeezed states of the harmonic oscillator
system and we will recover them in the limit when the deformation parameters go to zero. The
approach of AES also gives us the possibility of constructing, starting from a deformed algebra,
some Hamiltonians of physical systems to which these deformed coherent and squeezed states
are associated, similarly as for algebras and superalgebras [14, 15].

It is important to mention that the deformed coherent states obtained by this method differ
from the q-deformed coherent states associated with a q-deformed oscillator algebra, which
is not a Hopf algebra, constructed by considering either deformed exponential functions,
eigenstates of a given deformed annihilation operator, a generalization of the usual form of
the standard coherent states, a resolution of the identity technique or a generalized group
theoretical techniques [16–18].

The paper is organized as follows. In section 2, a Fock space representation of deformed
quantum algebras associated with the Heisenberg algebra h(2) is given. In section 3,
we compute the AES associated with these algebras and obtain new classes of deformed
coherent and squeezed states that are true deformations of the standard coherent and squeezed
states associated with the harmonic oscillator system. These states are parametrized by
the deformation parameters which will be considered as real numbers and also as real
paragrassmann numbers. In section 4, we compute the product of the dispersions of the
position and linear momentum operators of a particle in these states when the parameters
of deformation are small. We compare them with the corresponding results obtained in
the minimum uncertainty states [14]. Some details of calculations are presented in the
appendices A and B. We also give general expressions of these dispersions, in the case where
a non-trivial one parameter algebra deformation family is concerned, for all values of the
deformation parameter. Finally, we construct a class of η-pseudo Hermitian Hamiltonians
[19] to which a subset of these deformed states are the associated coherent states.

2. Deformed quantum Heisenberg algebras in the Fock representation space

We are considering in this work, the deformed Heisenberg quantum algebras obtained by
Hussin and Lauzon [13]. They have been obtained using the well-known R-matrix method [1]
and are mainly of two types. The first one is formed by the generators A,B,C which satisfy

[A,B] = 0, [B,C] = − 2z

p2
(cosh(pB) − 1), [A,C] = 1

p
sinh(pB). (2)

It is denoted by U z,p(h(2)), where p and z are different from zero.
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Let us mention that the invertible change of basis

Ã = A, B̃ = 2

p
sinh

(
pB

2

)
, C̃ = 1

cosh
(

pB

2

)C, (3)

leads to the new deformed algebra Ũz,0(h(2))

[Ã, B̃] = 0, [B̃, C̃] = −zB̃2, [Ã, C̃] = B̃. (4)

This means that we get the same commutation relations as in (2) when p goes to zero. As
it has been pointed out by Ballesteros et al [20], here the p parameter is superfluous and the
families of bialgebras Uz,p(h(2)) and Uz,0(h(2)) are isomorphic (these families are identified
there as of type I+) on the condition that the coproduct form stands invariant [21].

The second quantum deformation of h(2) is given by

[A,B] = [B,C] = 0, [A,C] = epB − e−qB

p + q
(5)

and is denoted by Up,q(h(2)), where p, q �= 0. It corresponds to the so-called type II

bialgebras in [20]. When p = q, we find the quantum Heisenberg algebra obtained in
Celeghini et al [22] (see also [21]), i.e.,

[A,B] = [B,C] = 0, [A,C] = 1

p
sinh(pB). (6)

Let us now give a boson realization of these deformed Lie algebras, in terms of the
usual creation operator, a†, and annihilation operator, a, associated with the standard quantum
harmonic oscillator system. For Ũz,0(h(2)) given in (4), it is given by

Ã = −a†, B̃ = eza†
, C̃ = eza†

a. (7)

From (3) and (7), we thus get a realization of Uz,p(h(2)) as

A = −a†, B = 2

p
sinh−1

(p

2
eza†

)
, C = eza†

√
1 +

(p

2
eza†

)2
a. (8)

Another realization of Ũz,0(h(2)) is

Ã = a, B̃ = e−za, C̃ = a† e−za. (9)

We thus get another realization of Uz,p(h(2)) as

A = a, B = 2

p
sinh−1

(p

2
e−za

)
, C = a† e−za

√
1 +

(p

2
e−za

)2
. (10)

When z goes to zero, operators (8) become

A = −a†, B = 2

p
sinh−1

(p

2

)
I, C =

√
1 +

p2

4
a, (11)

while operators (10) become

A = a, B = 2

p
sinh−1

(p

2

)
I, C =

√
1 +

p2

4
a†. (12)

Operators (11) or (12) thus constitute a realization of deformed Heisenberg algebra (6). When
p goes to zero, we regain h(2).

Algebra (5) is clearly isomorphic to h(2) if we introduce

Ã = A, C̃ = C, B̃ = epB − e−qB

p + q
. (13)

So to obtain new class of deformed coherent and squeezed states using the AES method
we will deal in the following with Ũz,0(h(2)) and Uz,p(h(2)).
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3. AES and deformed coherent and squeezed states

In this section, we compute the AES associated with Ũz,0(h(2)) and Uz,p(h(2)), using the
representations obtained in the preceding section. We thus get new classes of deformed
coherent and squeezed states associated with the harmonic oscillator system.

3.1. Deformed algebra eigenstates for Ũz,0(h(2))

We start with Ũz,0(h(2)) as given by (4) using realizations (7) and (9). The AES are thus
defined as the set of solutions of the eigenvalue equation

[α+Ã + α0B̃ + α−C̃]|ψ〉 = α|ψ〉, α−, α0, α+, α ∈ C. (14)

3.1.1. Deformed harmonic oscillator coherent and squeezed states. Let us take first
realization (7). Thus, if α− �= 0, equation (14) can be written in the form[

eza†
a + µa† + ν eza†]|ψ〉 = λ|ψ〉, µ, ν, λ ∈ C. (15)

By defining

|ψ〉 = e−νa† |ϕ〉 (16)

and using e−νa†
a eνa† = a + ν, equation (15) can be reduced to[
eza†

a + µa†]|ϕ〉 = λ|ϕ〉, µ, λ ∈ C. (17)

To solve this eigenvalue equation, let us consider the Bargmann space F of analytic functions
f (ξ) (ξ ∈ C), provided with the scalar product

(f1, f2) =
∫

C

f1(ξ)f2(ξ) e−ξ̄ ξ dξ̄ dξ

2π i
, ∀f1, f2∈ F . (18)

It is well known that any function f ∈ F can be expressed as a linear combination of
orthonormalized functions un(ξ) = ξn√

n!
, n = 0, 1, 2, . . . , verifying

(um, un) =
∫

C

um(ξ)un(ξ) e−ξ̄ ξ dξ̄ dξ

2π i
= δmn, (19)

that is

f (ξ) =
∞∑

n=0

cnun(ξ), (20)

with

cn =
∫

C

un(ξ)f (ξ) e−ξ̄ ξ dξ̄ dξ

2π i
. (21)

Let us assume a solution of (17) of the type

|ϕ〉 =
∞∑

n=0

cn|n〉, (22)

where the set of states {|n〉}∞n=0 forms the basis of the standard Fock oscillator space, verifying
the orthogonality relation

〈m|n〉 = δmn. (23)

As usual, the action of the operators a and a† on these states is given by

a|n〉 = √
n|n − 1〉, a†|n〉 =

√
n + 1|n + 1〉. (24)
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Let us take |ξ̄〉 with be the standard coherent states associated with the harmonic oscillator
system, that is

|ξ̄〉 = eξ̄ a† |0〉 =
∞∑

n=0

(ξ̄ )
n

√
n!

|n〉. (25)

Then, according to the orthogonality property (23), the projection of |ϕ〉 on the coherent state
|ξ̄〉 is given by the analytic function

ϕ(ξ) = 〈ξ̄ |ϕ〉 =
∞∑

n=0

cnun(ξ). (26)

The action of the operators a† and a in this representation corresponds to

〈ξ̄ |a†|ϕ〉 = ξϕ(ξ), 〈ξ̄ |a|ϕ〉 = dϕ

dξ
(ξ) (27)

respectively. Thus, by projecting both sides of the eigenvalue equation (17) on the coherent
states |ξ̄〉 and then using (27), we can write it as(

ezξ d

dξ
+ µξ

)
ϕ(ξ) = λϕ(ξ). (28)

The general solution of this differential equation is given by

ϕ(ξ) = C0(λ, µ, z) exp

( ∞∑
k=0

(−zξ)k

(k + 1)!

(
λξ − k + 1

k + 2
µξ 2

))
, (29)

where C0 is an arbitrary constant which can be fixed from the normalization condition

(ϕ, ϕ) =
∫

C

ϕ(ξ)ϕ(ξ) e−ξ̄ ξ dξ̄ dξ

2π i
= 1. (30)

Let us note that in the particular limit when z goes to zero, solution (29) becomes the symbol
for the squeezed states [23] associated with the standard harmonic oscillator, that is

ϕ(ξ) = C0(λ, µ, 0) exp
(
λξ − µ

2
ξ 2
)

. (31)

This quantity is normalizable only if |µ| < 1 [24].
When z �= 0, solution (29) can be written in the form

ϕ(ξ) = C0(λ, µ, z) exp

(
λ

z
− µ

z2

)
exp

(
e−zξ (µ − λz + µzξ)

z2

)
. (32)

Going back to expression (26), we get the coefficients cn, n = 0, 1, . . . , as

cn =
∫

C

un(ξ)ϕ(ξ) e−ξ̄ ξ dξ̄ dξ

2π i
= C0(λ, µ, z) exp

(
λ

z
− µ

z2

)
×

∫
C

ξ̄ n

√
n!

exp

(
e−zξ (µ − λz + µzξ)

z2

)
e−ξ̄ ξ dξ̄ dξ

2π i
. (33)

By using the polar change of variables ξ = ρ eiϑ , this last equation can be written in the form

cn = C0(λ, µ, z) exp

(
λ

z
− µ

z2

)
×

∫ ∞

0

∫ 2π

0

ρn+1 e−ρ2

√
n!

e−inϑ exp

(
e−zρ eiϑ

z2
(µ − λz + µzρ eiϑ)

)
dρ dϑ

π
. (34)
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Let us write the exponential factor in the form

exp

(
e−zρ eiϑ

z2
(µ − λz + µzρ eiϑ)

)
=

∞∑
k=0

exp(−zkρ eiϑ)

k!

(
µ − λz + uzρ eiϑ

z2

)k

=
∞∑

k,l=0

k∑
m=0

(
k

m

)
ρl+m ei(l+m)ϑ (−zk)l(µz)m(µ − λz)k−m

k!l!z2k
(35)

to get

cn = C0(λ, µ, z) exp

(
λ

z
− µ

z2

) ∞∑
k,l=0

k∑
m=0

(
k

m

)
(−zk)l(µz)m(µ − λz)k−m

√
n!k!l!z2k

×
(∫ ∞

0
ρm+l+n+1 e−ρ2

dρ

)(∫ 2π

0
ei(l+m−n)ϑ dϑ

π

)
. (36)

Using the known results∫ 2π

0
ei(l+m−n)ϑ dϑ

π
= 2δl+m−n,0, (37)∫ ∞

0
ρm+l+n+1 e−ρ2

dρ = 1

2
�

(
m + l + n

2
+ 1

)
, (38)

and performing the sum over the index l, the expression for the coefficients cn reduces to

cn = C0(λ, µ, z) exp

(
λ

z
− µ

z2

)
zn

√
n!

∞∑
k=0

k<∑
m=0

(
n

m

)
(−k)n−m

(k − m)!

(
µ

z2

)m(
µ

z2
− λ

z

)k−m

, (39)

where k< denotes the minimum between k and n. This last expression can be written in the
form

cn = C0(λ, µ, z)
zn

√
n!

n∑
m=0

n−m∑
j=0

(
n

m

)
(−1)n−mυmj

(
µ

z2

)m(
µ

z2
− λ

z

)j

, (40)

where the coefficients υmj are obtained from

kn−m

(k − m)!
=

n−m∑
j=0

υmj

(k − m − j)!
. (41)

Thus the coefficients cn, n = 1, 2, . . . , represent polynomials of degree n − 1 in the z
variable. For example, c1 = λC0,

c2 = C0

√
2!

[(
λ2

2!
− µ

2

)
− λ

2
z

]
,

c3 = C0

√
3!

[(
λ3

3!
− µλ

2

)
+

(
µ

3
− λ2

2

)
z +

λ

6
z2

]
.

(42)

The normalization constant C0 can now be computed. Indeed, inserting (40) into (26) and
the resulting expression into the normalization condition (30), using the orthogonality relation
(19), we get

C0(λ, µ, z) =
[ ∞∑

n=0

z2n

n!

n∑
m=0

n∑
r=0

n−m∑
j=0

n−r∑
l=0

(
n

m

)(
n

r

)
(−1)m+rυmjυrl

×
(

µ

z2

)m(
µ̄

z2

)r(
µ

z2
− λ

z

)j(
µ̄

z2
− λ̄

z

)l
]− 1

2

, (43)



Coherent and squeezed states of quantum Heisenberg algebras 2381

which has been chosen real. The convergence of these series is not easy to determine. In the
case where z = 0, as we have already mentioned, the series

∑∞
n=0 |cn|2 converges for all λ

provided that |µ| < 1. In the case µ = 0, this series becomes
∞∑

n=0

|cn|2 = |C0(λ, z)|2 exp

(
λ

z

) ∞∑
n=0

(− λ
z

)n
n!

exp

(
− λ̄

z

∞∑
k=1

(z2n)
k

k!

)
. (44)

It converges for all z > 0 provided that the phase θ in λ = β eiθ satisfies −π
2 � θ � π

2 ,

whereas for all z < 0, it converges if π
2 � θ � 3π

2 .

Finally, we can show that the normalized algebra eigenstates |ϕ〉, solving (17) , can be
expressed in terms of a deformed squeezed operator acting on the ground state of the standard
harmonic oscillator, that is

|ϕ〉 = C0(λ, µ, z) exp

( ∞∑
k=0

(−za†)
k

(k + 1)!

(
λa† − k + 1

k + 2
µ(a†)

2
))

|0〉. (45)

Also, combining this last equation with equation (16), we get the algebra eigenstates solving
(15) to be the deformed coherent states

|ψ〉 = N0(λ, µ, ν, z) exp

( ∞∑
k=0

(−za†)
k

(k + 1)!

(
λa† − k + 1

k + 2
µ(a†)

2
))

e−νa† |0〉, (46)

where N0(λ, µ, ν, z) is a normalization constant which can be computed in the same way as
C0(λ, µ, z).

3.1.2. Perturbed squeezed states. Let us now assume that z is a small perturbation parameter
of order k0 − 1, where k0 is an integer greater or equal to 2. From (45), neglecting the terms
containing the power of z greater than k0 − 1, we can write

|ϕ〉 ≈ C0(λ, µ, z, k0)

[
1 +

k0−1∑
k=1

(−za†)
k

(k + 1)!

(
λa† − k + 1

k + 2
µ(a†)

2
)

+ · · · +
1

(k0 − 1)!

(
−za†

2!

(
λa† − 2

3
µ(a†)

2
))k0−1]

exp
(
λa† − µ

2
(a†)

2
)

|0〉.

(47)

These states can be normalized in the standard form. For instance, when k0 = 2, µ =
δ eiφ, λ = β eiθ , where φ and θ are real phases, 0 � δ < 1, and β � 0, a normalized version
of the deformed squeezed states (47) is given by

|ϕ〉 ≈ �(δ, φ, β, θ)

[
1 + z

(
δ eiφ

3
(a†)

3 − β eiθ

2
(a†)

2
)]

S(−arctan(δ) eiφ)D

(
β eiθ

√
1 − δ2

)
|0〉,
(48)

where

�(δ, φ, β, θ) = 1 +
zβ

2(1 − δ2)
2

[(
2δ2 + β2

(
1 + δ2

1 − δ2

))
cos θ

− δ

(
1 + δ2 +

2β2

1 − δ2

)
cos(φ − θ)

+ δ2β2

(
1 +

2δ2

3(1 − δ2)

)
cos(2φ − 3θ) − 2δβ2

3(1 − δ2)
cos(φ − 3θ)

]
. (49)
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Here S(χ) = exp
[−(

χ (a†)
2

2 − χ̄ a2

2

)]
is the standard unitary squeezed operator [25] and

D(λ) = exp(λa† − λ̄a) the standard displacement operator [26].

3.1.3. Deformed squeezed and coherent states parametrized by paragrassmann numbers.
Let us now use realization (9) of Ũz,0(h(2)). In the case α+ �= 0, equation (14) can be now
written in the form

[a + µa† e−za + ν e−za]|ψ〉 = λ|ψ〉, µ, ν, λ ∈ C. (50)

There are two types of equations to solve. The first type is obtained when µ �= 0 and ν �= 0.

We can take

|ψ〉 = exp

(
ν

µ
a

)
|ϕ〉 (51)

and use the relation, exp
(− ν

µ
a
)
a† exp

(
ν
µ
a
) = a† − ν

µ
, to reduce (50) to the form

[a + µa† e−za]|ϕ〉 = λ|ϕ〉, µ, λ ∈ C. (52)

If ν = 0 and µ �= 0, we see from (50) that the same type of eigenvalue equation must be
solved. The second type is obtained when µ = 0. The eigenvalue equation is

[a + ν e−za]|ψ〉 = λ|ψ〉, ν, λ ∈ C. (53)

We begin with the resolution of equation (52). Let us assume |ϕ〉 to be again a solution
of type (22). Thus, proceeding as in the preceding section, the eigenvalue equation satisfied
by the symbol ϕ(ξ), in the Bargmann representation, is given by(

d

dξ
+ µξ e−z d

dξ

)
ϕ(ξ) = λϕ(ξ), µ, λ ∈ C. (54)

To solve this equation, let us assume that z is a real paragrassmann number [8, 9], that is
zk0 = 0, for some integer k0 � 1. A detailed procedure of resolution of this equation is
given in appendix A. Let us note that the case k0 = 1, i.e., z = 0, is somewhat trivial
since the eigenfunctions ϕ(ξ) solving (54) are given by the standard squeezed symbol (31).
When k0 = 2, or z2 = 0, i.e., when z is a odd Grassmann number [27, 28], the eigenvalue
equation (54) becomes(

(1 − µzξ)
d

dξ
+ µξ

)
ϕ(ξ) = λϕ(ξ), µ, λ ∈ C. (55)

There are two independent solutions (see appendix A). The normalizable solution of this
eigenvalue equation is given by the deformed squeezed symbol

ϕ(λ, µ, z)(ξ) = C0(λ, µ, z)

[
1 + zµ

(
λ

ξ 2

2
− µ

ξ 3

3

)]
exp

(
λξ − µ

2
ξ 2
)

. (56)

A normalized version of these states, in the Fock space representation, is given by

|ϕ〉 = �̃(δ, φ, β, θ)

[
1 + zδ

(
δ e2iφ

3
(a†)

3 − β ei(θ+φ)

2
(a†)

2
)]

×S(−arctan(δ) eiφ)D

(
β eiθ

√
1 − δ2

)
|0〉, (57)

where λ and µ have been chosen as in the preceding subsection and

�̃(δ, φ, β, θ) = 1 − zδβ

2(1 − δ2)
2

[(
2δ2 + β2

(
1 + δ2

1 − δ2

))
cos(θ − φ)
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− δ

(
1 + δ2 +

2β2

1 − δ2

)
cos θ + δ2β2

(
1 +

2δ2

3(1 − δ2)

)
cos(φ − 3θ)

− 2δβ2

3(1 − δ2)
cos(2φ − 3θ)

]
. (58)

When k0 = 3, or z3 = 0, the eigenvalue equation (54) becomes the second-order differential
equation (

1

2
µz2ξ

d2

dξ 2
+ (1 − µzξ)

d

dξ

)
ϕ(ξ) = (λ − µξ)ϕ(ξ), µ, λ,∈ C. (59)

According to the results obtained in appendix A, the general solution of this equation can be
expanded in the form

ϕ(ξ) = ϕ0(ξ) + zϕ1(ξ) + z2ϕ2(ξ), (60)

with

ϕ0(ξ) = C0 exp

(
λξ − µ

ξ 2

2

)
, (61)

ϕ1(ξ) =
[
µ

(
λ

ξ 2

2
− µ

ξ 3

3

)
C0 + C1

]
exp

(
λξ − µ

ξ 2

2

)
, (62)

ϕ2(ξ) =
[(

µ(µ − λ2)
ξ 2

4
+

2

3
µ2λξ 3 + µ2(λ2 − 3µ)

ξ 4

8
− λµ3 ξ 5

6
+ µ4 ξ 6

18

)
C0

+ µ

(
λ

ξ 2

2
− µ

ξ 3

3

)
C1 + C2

]
exp

(
λξ − µ

ξ 2

2

)
, (63)

where C0, C1 and C2 are arbitrary integration constants. Three independent solutions may
thus be obtained. The first one is obtained by taking C1 = C2 = 0. We get

ϕ(ξ) = C0

[
1 + zµ

(
λ

ξ 2

2
− µ

ξ 3

3

)
+ z2

(
µ(µ − λ2)

ξ 2

4
+

2

3
µ2λξ 3

+ µ2(λ2 − 3µ)
ξ 4

8
− λµ3 ξ 5

6
+ µ4 ξ 6

18

)]
exp

(
λξ − µ

ξ 2

2

)
(64)

= C0 exp

[
zµ

(
λ

ξ 2

2
− µ

ξ 3

3

)
+ z2f (ξ)

]
exp

(
λξ − µ

ξ 2

2

)
, (65)

where

f (ξ) =
(

µ(µ − λ2)
ξ 2

4
+

2

3
µ2λξ 3 − 3µ3 ξ 4

8

)
. (66)

This solution can be normalized and represents a second-order paragrassmann deformation of
squeezed states associated with the standard harmonic oscillator.

The other independent solutions are given respectively by

ϕ(ξ) = C1z

[
1 + zµ

(
λ

ξ 2

2
− µ

ξ 3

3

)]
exp

(
λξ − µ

ξ 2

2

)
(67)
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and

ϕ(ξ) = C2z
2 exp

(
λξ − µ

ξ 2

2

)
. (68)

These solutions cannot be normalized since zk, k = 1, 2, are not invertible paragrassmann
numbers and zk = 0, k = 3, 4, . . . .

The higher order paragrassmann deformations of the squeezed states associated with the
standard harmonic oscillator can be obtained following a similar procedure (see appendix A).

In the case of eigenvalue equation (53), the differential equation to solve is given by(
d

dξ
+ ν e−z d

dξ

)
ϕ(ξ) = λϕ(ξ), ν, λ,∈ C. (69)

Proceedings as before and considering the results of appendix A, the normalizable solutions of
this last equation, when k0 = 1, 2, 3, are given respectively by the deformed coherent symbols

ϕ(1)(ξ) = C0 exp((λ − ν)ξ), (70)

ϕ(2)(ξ) = C0 [1 + z(λ − ν)νξ ] exp((λ − ν)ξ) (71)

and

ϕ(3)(ξ) = C0

{
1 + z(λ − ν)νξ + z2

[(
λ2ν

2
+ 2λν2 − 3ν3

2

)
ξ

+

(
λ2ν2

2
− λν3 +

ν4

2

)
ξ 2

]}
exp((λ − ν)ξ). (72)

These solutions can be normalized and represent zero-, first- and second-order paragrassmann
deformations, respectively, of coherent states associated with the standard harmonic oscillator.
For higher values of k0, we must proceed as in appendix A.

3.2. Deformed algebra eigenstates for Uz,p(h(2))

It is interesting to compute the AES associated with Uz,p(h(2)), z, p �= 0, and compare it
with those associated with Uz,0(h(2)). As we have noted in section 2, these quantum algebras
are isomorphic in the sense that there is a nonlinear change of basis transforming one to the
other. In general, the existence of this isomorphism does not imply the existence of an internal
homomorphism at the AES level. Indeed, by definition, the eigenvalue equation determining
the set of AES deals with an arbitrary linear combination of the deformed algebra generators,
then from the inverses of transformations (3) and the solvable structure of the commutation
relations (4), it is impossible to find an internal homomorphism, at the AES level, transforming
the eigenvalue equation with z, p �= 0 to the eigenvalue equation with z �= 0, p = 0.

To see that, in this section, we consider the two parameters deformed algebra Uz,p(h(2))

as given by (2), and compute the AES using the particular realization (8). More precisely, we
have to solve the eigenvalue equation[

eza†

√
1 +

(p

2
eza†

)2
a + µa† +

2ν

p
sinh−1

(p

2
eza†

)]
|ψ〉 = λ|ψ〉, µ, ν, λ ∈ C. (73)

In the Bargmann representation, this equation becomes the first-order differential equation[
ezξ

√
1 +

(p

2
ezξ

)2 d

dξ
+ µξ +

2ν

p
sinh−1

(p

2
ezξ

)]
ψ(ξ) = λψ(ξ), µ, ν, λ ∈ C. (74)
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When z = 0, we easily get the standard squeezed symbols

ψ0,p(ξ) = C0(p, λ, µ, ν) exp

[(
λ − 2ν

p
sinh−1(p/2)

)
ξ − µ

ξ 2

2

]
. (75)

These symbols correspond with the Bargmann representation of the AES associated with the
deformed quantum Heisenberg algebra realization (11). Moreover, when p goes to zero, these
symbols become the standard squeezed symbols associated with h(2).

When z �= 0, making the change of variable ζ = ezξ , rearranging the terms and using the
method of characteristics curves to separate the differentials, we get

dψ

ψ
(ζ ) =

[
λ − µ

z
ln ζ − 2ν

p
sinh−1

(
pζ

2

)]
zζ 2

√
1 + p2ζ 2

4

dζ. (76)

Integrating both sides of this equation and then exponentiating, we get

ψz,p(ζ ) = C0(λ, µ, ν; z, p) exp


√

1 + p2ζ 2

4

z2ζ

(
(1 + ln ζ )µ − λz +

2νz

p
sinh−1

(
pζ

2

))

− µp

2z2
sinh−1

(
pζ

2

)
− ν

z
ln ζ

 . (77)

This result includes those obtained for (15) when p goes to zero. Moreover, when we set also
ν = 0, we regain (32).

3.2.1. Perturbed two parameters deformation coherent and squeezed states. Up to first order
of approximation in z and p2, the deformed symbol (77) writes

ψz,p(ξ) ≈ C̃0(λ, µ, ν; z, p)

[
1 + z

(
µξ 3

3
− λξ 2

2

)
+

p2

4

(
µξ 2

4
−

(
λ

2
− ν

3

)
ξ

)]
exp

(
(λ − ν)ξ − 1

2
µξ 2

)
. (78)

In the case µ = δ eiφ, λ = β eiθ and ν = −γ eiη, where γ � 0, a normalized version of these
states, in the Fock representation, is given by

|ψ〉 ≈ �̃(δ, φ, β, θ, γ, η)

{
1 +

[
z

(
δ eiφ

3
(a†)

3 − β eiθ

2
(a†)

2
)]

+
p2

4

[
δ eiφ

4
(a†)

2 −
(

β eiθ

2
+

γ eiη

3

)
a†
]}

×S(−arctan(δ) eiφ)D

(
β̃ eiθ̃

√
1 − δ2

)
|0〉, (79)

where

�̃(δ, φ, β, θ, γ, η) = 1 +
z

2(1 − δ2)
2

{
β̃

[(
2δ2 + β̃

2
(

1 + δ2

1 − δ2

))
cos θ̃

− δ

(
1 + δ2 +

2β̃
2

1 − δ2

)
cos(φ − θ̃ )
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+ δ2β̃
2
(

1 +
2δ2

3(1 − δ2)

)
cos(2φ − 3θ̃ ) − 2δβ̃

2

3(1 − δ2)
cos(φ − 3θ̃ )

]

− γ

[
β̃

2
cos(η − 2θ̃ ) − δ(2β̃

2
+ 1 − δ2) cos(η − θ̃ )

+ δ2β̃
2

cos(2φ − η − 2θ̃ )

]}
− p2

16(1 − δ2)
2

{
δβ̃

2
(3 cos(φ − 2θ̃ )

+
2γ

3
β̃(1 − δ2)(cos(η − θ̃ ) + δ cos(φ − η − θ̃ )) − 2β̃2 − δ2 + δ4

}
, (80)

where

β̃ =
√

β2 + γ 2 + 2βγ cos(η − θ), θ̃ = tan−1

(
β sin θ + γ sin η

β cos θ + γ cos η

)
. (81)

We note that, in the case γ = 0 and p = 0, these normalized states become the normalized
states given in equation (48).

4. Some properties of the deformed states

In this section, we will give some properties of the deformed states found in the preceding
section. From Fock space representation, we will deduce the physical quantities X and P,

representing the position and linear momentum of a particle, respectively, and compute the
corresponding dispersions in both the perturbed deformed states associated with Uz,p(h(2))

and the deformed states associated with Ũz,0(h(2)). We will also connect the last states with
an η-pseudo Hermitian Halmiltonian [19].

4.1. Squeezing properties

First, let us consider the squeezing properties of X and P. In the Fock space representation,
these quantities are given by the Hermitian operators (we have assumed that the mass, angular
frequency and Planck’s constant are all equal to 1)

X = (a + a†)√
2

, P = i
(a† − a)√

2
. (82)

They verify the canonical commutation relation

[X,P ] = iI. (83)

The dispersion of these quantities, computed on a specific normalized particle state |ψ〉, is
defined as

(�X)2 = 〈ψ |X2|ψ〉 − (〈ψ |X|ψ〉)2 (84)

and

(�P )2 = 〈ψ |P 2|ψ〉 − (〈ψ |P |ψ〉)2. (85)

The product of these dispersions satisfies the Schrödinger–Robertson uncertainty relation
(SRUR) [29, 30]

(�X)2(�P )2 � 1
4 (〈I 〉2 + 〈F 〉2) = 1

2 (1 + 〈F 〉2), (86)

where F is the anti-commutator F = {X − 〈X〉I, P − 〈P 〉I }. The mean value of F is a
correlation measure between X and P. When 〈F 〉 = 0, we regain the standard Heisenberg
uncertainty principle.
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The minimum uncertainty states (MUS) are states that satisfy the equality in (86). They
are called coherent states when the dispersions of both X and P are the same and squeezed
states when these dispersions are different to each other. The states for which the dispersion
of X is greater than that of P are called X squeezed whereas the states for which the dispersion
of P is greater than that of X are called P squeezed.

We are interested to compute the dispersions of X and P, in the deformed squeezed states
(79), when ν = 0, or γ = 0. More precisely, we want to study the effect of the deformation
parameters on the squeezed properties of these quantities. As we have seen, when z and p go
to zero, states (79) become the standard harmonic oscillator squeezed states. In such a case,
we know that the dispersions of X and P are independent of λ = β eiθ , and given by [14]

(�X)0
2 = 1 − 2δ cos φ + δ2

2(1 − δ2)
and (�P )0

2 = 1 + 2δ cos φ + δ2

2(1 − δ2)
. (87)

All these states are MUS, that is, they satisfy the equality in (86).
When γ = 0, the square of the mean value of X, in states (79), to first order of

approximation in z and p2, is given by

〈ψ |X|ψ〉2 ≈ 2(Re �01) Re

{
(1 + 4ε(z, p))�01

+ 2z

(
δ e−iφ

3
�04 − β e−iθ

2
�03 +

δ eiφ

3
�13 − β eiθ

2
�12

)

+
p2

2

(
δ e−iφ

4
�03 − β e−iθ

2
�02 +

δ eiφ

4
�12 − β eiθ

2
�11

)}
, (88)

where ε(z, p) = �̃(δ, φ, β, θ, 0, 0) − 1 and �kl and �kl, k, l = 1, 2, . . . , are matrix elements
defined in appendix B. According to (82), we have the same expression for the square of the
mean value of P, but taking the imaginary part in place of the real part.

On the other hand, the mean value of X2 in (79), to first order of approximation in z and
p2, is given by

〈ψ |X2|ψ〉 ≈ 1

2
+ (1 + 2ε(z, p))(�11 + Re �02)

+ z Re

(
δ e−iφ

3
�05 − β e−iθ

2
�04 +

δ eiφ

3
�23 − β eiθ

2
�22

)

+
p2

4
Re

(
δ e−iφ

4
�04 − β e−iθ

2
�03 +

δ eiφ

4
�22 − β eiθ

2
�21

)

+ z

(
δ e−iφ

3
(�41 − �03) − β e−iθ

2
(�31 − �02) +

δ eiφ

3
(�14 − �03)

− β eiθ

2
(�13 − �02)

)
+

p2

4

(
δ e−iφ

4
(�31 − �02) − β e−iθ

2
(�21 − �01)

+
δ eiφ

4
(�13 − �02) − β eiθ

2
(�12 − �01)

)
. (89)

Again, according to (82), we have the same expression for the mean value of P 2, but taking
the negative of the real part in place of the real part.
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Figure 1. Graphs of the dispersions of X and P as functions of φ for p = 0 and z = 0.000,

0.0010, 0.0015, 0.0020.

Combining (88) with (89), according to equation (84), we get the dispersion of X. In the
same way, we can obtain the dispersion of P. Inserting the matrix elements �ij and �ij , as
given in appendix B, we can compute these dispersions explicitly.

Figure 1 shows the dispersions of X and P in the minimum uncertainty squeezed states
in dashed lines, and in the deformed squeezed states in solid lines, as a function of φ

for fixed values of the parameters δ, β, θ and p (δ = 0.5, β = 2.0, θ = 0.8π, p =
0.00) and for special values of z = 0.0010, 0.0015, 0.0020 (from the smaller to the
greater grey level). We observe that, as a consequence of the small deformations in
the parameters z the squeezing properties of X and P have not been essentially changed.
Thus, in all the cases, we have P-squeezed states when −π

2 < φ < π
2 , and X-squeezed

states when π
2 < φ < 3π

2 . Also we observe that the product of the dispersions of
X and P in the deformed squeezed states, for a given value of φ, is always greater than
the product of the dispersions in the minimum uncertainty states, as required by the SRUR.
This difference is more remarkable for values of φ in the range π

2 � φ < 3π
2 . Let us note that

when φ = ±π
2 , the MUS are coherent states, in the sense of the SRUR, i,e., the dispersion

of X and P is the same. Indeed, in all these cases, (�X)0
2 = (�P )0

2 = 0.83. This value is
conserved by the product of the dispersions of X and P in the deformed squeezed states when
φ = −π

2 , but when φ = π
2 , it grows quickly as z increases.

Figure 2 shows the dispersions of X and P in the minimum uncertainty squeezed states in
dashed lines, and in the deformed squeezed states in solid lines, as a function of φ for fixed
values of the parameters δ, β, θ and z (δ = 0.5, β = 2.0, θ = 0.8π, z = 0.0030) and for
special values of p = 0.00, 0.06, 0.11 (from the greater to the smaller grey level). We observe
that the product of dispersions of X and P decreases when p increases. Thus the influence of
the p parameter on the first order in z deformed states is to reduce the uncertainty product of
X and P and to bring closer this quantity to the minimum uncertainty values.

Figure 3 shows the typical behaviour of the dispersions of X and P in the minimum
uncertainty squeezed states in dashed lines, and in the deformed squeezed states in solid lines,
as a function of δ for φ = 0.5, β = 2.0, θ = 0.8π, z = 0.0025 and p = 0.001. We observe
again that, as a consequence of the small deformations in z and p, the squeezing properties of X
and P have not been essentially changed. Thus, the figure shows the behaviour of P-squeezed
and P-deformed squeezed states. When 0 < δ � 0.75, the product of the dispersions of
X and P, in the deformed squeezed states is always greater than the corresponding product in
the minimum uncertainty squeezed states, as required by the SRUR. For higher values of δ,
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Figure 2. Graphs of the dispersions of X and P as functions of φ for z = 0.0030, p =
0.00, 0.06, 0.11, β = 2.0, θ = 0.8π and δ = 0.5.
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Figure 3. Graphs of the dispersions of X and P as functions of δ for z = 0.0025, p = 0.01, β =
2.0, θ = 0.8π and φ = π

6 .

only the dashed lines represent the true behaviour of the dispersions of X and P. Indeed, the
approximation for the deformed squeezed states, in this region, is not valid. These states are
no longer normalizable.

4.2. General formulae for the dispersions of X and P in the z deformed states

The mean values of Xk, k = 1, 2, . . . , in states (45) can be expressed in the form

〈ϕ|Xk|ϕ〉 =
∂k

∂τ k 〈̃ϕ|eτX|ϕ̃〉|τ=0

〈̃ϕ|ϕ̃〉 =
∂k

∂τ k

{
e− τ2

4 〈̃ϕ|e τ√
2
a e

τ√
2
a† |ϕ̃〉}∣∣

τ=0

〈̃ϕ|ϕ̃〉 , (90)

where

|̃ϕ〉 = exp

(
e−za† (µ − λz + µza†)

z2

)
|0〉. (91)

Inserting these results into (84) and evaluating we get

(�X)2 = −1

2
+

∂2

∂τ 2 〈̃ϕ|e τ√
2
ae

τ√
2
a† |ϕ̃〉∣∣

τ=0

〈̃ϕ|ϕ̃〉 −
(

∂
∂τ

〈̃ϕ|e τ√
2
a e

τ√
2
a† |ϕ̃〉∣∣

τ=0

〈̃ϕ|ϕ̃〉

)2

. (92)
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To compute the matrix element 〈̃ϕ|e τ√
2
a e

τ√
2
a† |ϕ̃〉, we can firstly write

e
τ√
2
a† |ϕ̃〉 =

∞∑
n=0

Cn(τ)|n〉 (93)

and then compute the coefficients Cn(τ), n = 0, 1, 2, . . . , in the Bargman representation, in
the same way as we have done in section 3.1.1. That is

〈̃ϕ|e τ√
2
a e

τ√
2
a† |ϕ̃〉 =

∞∑
n=0

C̄n(τ )Cn(τ ), (94)

where

Cn(τ) = 1√
n!

n∑
r=0

(
n

r

)(
τ√
2

)r

zn−r

∞∑
k=0

k̃<∑
m=0

(
n − r

m

)
(−k)n−r−m

(k − m)!

(
µ

z2

)m(
µ

z2
− λ

z

)k−m

,

(95)

with k̃< the minimum between k and n − r.

Inserting (94) into (92) and evaluating again we get

(�X)2 = −1

2
+

∑∞
n=0[C̄n(τ )C ′′

n(τ ) + C̄ ′′
nCn(τ ) + 2C̄ ′

nC
′
n(τ )]|τ=0∑∞

n=0 C̄n(0)Cn(0)

−
(∑∞

n=0[C̄n(τ )C ′
n(τ ) + C̄ ′

n(τ )Cn(τ )]|τ=0∑∞
n=0 C̄n(0)Cn(0)

)2

, (96)

where, for instance, C ′
n(τ ) = dCn

dτ
(τ ). From (95), we obtain

C ′
n(0) = 1√

n!

(
n

1

)
1√
2
zn−1

∞∑
k=0

k̃1∑
m=0

(
n − 1

m

)
(−k)n−1−m

(k − m)!

(
µ

z2

)m(
µ

z2
− λ

z

)k−m

, (97)

when n = 1, 2, . . . , with k̃1 the minimum between k and n − 1,

C ′′
n(0) = 1√

n!

(
n

2

)
zn−2

∞∑
k=0

k̃2∑
m=0

(
n − 2

m

)
(−k)n−2−m

(k − m)!

(
µ

z2

)m(
µ

z2
− λ

z

)k−m

, (98)

when n = 2, 3, . . . , with k̃2 the minimum between k and n − 2, and

C ′
0(0) = C ′′

0 (0) = C ′′
1 (0) = 0. (99)

The formula to the dispersion of P can be obtained from (96) changing the τ argument of
Cn(τ) by iτ and then deriving and evaluating τ = 0. Thus, dispersions formulae of X and P at
all order in z can be obtained. The first-order perturbation formulae of these dispersions must
correspond to the dispersions obtained in the preceding subsection, in the limit when p goes
to zero.

4.3. η-pseudo Hermitian and Hermitian Hamiltonians

In this section we show that the subset of deformed coherent states (46), corresponding
to the eigenvalue λ = 0, are the coherent states associated with an η-pseudo Hermitian
Hamiltonian [19] but also, up with a similarity transformation, the coherent states associated
with a Hermitian Hamiltonian, both isospectral to the harmonic oscillator Hamiltonian. Indeed,
when λ = 0, eigenstates (46) correspond to the solutions of the eigenvalue equation

A|ψ〉 = −ν|ψ〉, ν ∈ C, (100)
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where A = a + µa† e−za†
. These solutions can be written in the form

|ψ;−ν〉 = Ñ0(µ,−ν, z)G(µ, z) e−νa† |0〉, (101)

where

G(µ, z) = exp

(
−µ

∞∑
k=0

(−za†)
k

k!

(a†)
2

(k + 2)

)
, (102)

and Ñ0(µ,−ν, z) is a normalization constant.
Let us now define the operator

H = Ga†aG−1, (103)

which satisfies

H† = ηHη−1, (104)

where η is the Hermitian operator

η(µ, z) = (G−1)
†
G−1. (105)

Thus H is an η-pseudo Hermitian Hamiltonian [19]. Moreover, as

Ga†G−1 = a†, GaG−1 = A, (106)

we get

H = a†A = a†(a + µa† e−za†) = a†a + µ e−za†
(a†)

2
. (107)

On the other hand, by construction, it is easy to verify that

[H,A] = −A, [H, a†] = a†, [A, a†] = 1 (108)

and

H|E0〉 = 0, (109)

where

|E0〉 = Ñ0(µ, 0, z)G(µ, z)|0〉. (110)

This state is thus an eigenstate of A corresponding to the eigenvalue ν = 0. Thus, according to
(108) and (109), the Hamiltonian H is isospectral to the harmonic oscillator Hamiltonian. A
represents an annihilation operator for this system and their eigenstates (101) are the associated
coherent states of H.

Let us mention that H verifies all the useful properties of pseudo-Hermitian operators
[31]. For instance,H is Hermitian on the physical Hilbert space Hphys spanned by their
corresponding eigenstates |ψn〉 ∝ (a†)

n
G|0〉, n = 0, 1, 2, . . . , endowed with the positive-

definite inner product 〈·|η ·〉. Also, H may be mapped to a Hermitian Hamiltonian H̃ by

a similarity transformation H̃ = ρ̂Hρ̂−1, where ρ̂(µ, z) = √
η(µ, z) =

√
G−1†G−1, is a

Hermitian operator on a Hilbert space H formed of same vectorial space Hphys but endowed
with the original inner product 〈·|·〉. Thus, in our case, according to (103), the Hermitian
Hamiltonian H̃ is unitarily equivalent to the standard harmonic oscillator Hamiltonian and is
given by

H̃ = ρ̂Ga†aG−1ρ̂−1. (111)

Indeed,

ρ̂G(ρ̂G)† = ρ̂GG†ρ̂† = ρ̂η−1ρ̂ = ρ̂(ρ̂2)
−1

ρ̂ = I (112)
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and

(ρ̂G)†ρ̂G = G†ρ̂†ρ̂G = G†ρ̂2G = G†(G−1)
†
G−1G = I, (113)

that is (ρ̂G)† = (ρ̂G)−1, i.e., ρ̂G is an unitary operator.
Let us note that in the absence of deformation (z = 0) the operator ρ̂ is given by

ρ̂(µ, 0) =
√√√√exp

(
µ̄

a2

2

)
exp

(
µ

a†2

2

)
=

[
exp

(∫ 1

0
[µ̄K− + µK+ + ς(s)K3] ds

)] 1
2

, (114)

where K− = a2

2 ,K+ = (a†)
2

2 and K3 = 1
4 (aa† + a†a) are the standard bosonic realizations of

the su(1, 1) Lie algebra generators verifying the commutation relations

[K−,K+] = 2K3, [K3,K±] = ±K± (115)

and

ς(s) = −2
d

ds
ln q(s), (116)

where

q(s) = cosh(|µ|(1 − s)) + |µ| sinh(|µ|(1 − s)). (117)

In this case, Hamiltonian (111) becomes

H̃ = ρ̂(µ, 0)[a†a + µ(a†)
2
]ρ̂−1(µ, 0), (118)

and represents a Hermitian Hamiltonian describing two photon processes in a single mode.
To know the explicit form of this Hamiltonian we must firstly factorize operator (114) in the
form of a product of exponential operators of each su(1, 1) generators and then insert it into
(118). This process requires to solve some Ricatti-type differential equations.

For small values of z, Hamiltonian (111) describes corrections to the energy of this system
as a consequence of the deformation. In general, when z �= 0, Hamiltonian (111) represents
multi-photon processes in a single mode.

The generalized coherent states associated with the system described by (111), can be
easily obtained from the coherent states associated with the standard harmonic oscillator.
Indeed, they are given by

|ν, z, µ〉 = ρ̂(µ, z)G(µ, z)D(ν)|0〉, (119)

where D(ν) is the standard unitary displacement operator defined at the end of subsection
3.1.2. These coherent states correspond to the coherent states associated with the pseudo-
Hermitian Hamiltonian (107), up to the transformation ρ̂(µ, z), and are eigenstates of the
annihilation operator Ã = ρ̂(µ, z)Aρ̂−1(µ, z) corresponding to the eigenvalue ν.

5. Conclusions

In this paper, we have found some realizations of the deformed quantum Heisenberg Lie
algebra Uz,p(h(2)), in terms of the usual creation and annihilation operators associated with
the Fock space representation of the standard harmonic oscillator. The method used to get
these realizations can be easily applied to find the realizations of other quantum Hopf algebras
and super-algebras, such as the bosonic and fermionic oscillators Hopf algebras [32] or the
quantum super-Heisenberg algebra, that can also be obtained by using the R-matrix approach.

We have computed the AES associated with Uz,p(h(2)). We have seen that the set of
AES contains the set of coherent and squeezed states associated with the standard harmonic
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oscillator system but also a new class of deformed coherent and squeezed states, parametrized
by the deformation parameters. We have studied the behaviour of the dispersions of the position
and linear momentum operators of a particle in a class of perturbed squeezed states and we
have compared them with the behaviour of these dispersions in the minimum uncertainty
squeezed states. Also we have computed these dispersions on the deformed states associated
with Uz,0(h(2)) for all values of the z parameter. To first order in z, these last dispersions
reduce to the perturbed ones obtained in Uz,p(h(2)), when p goes to zero. Besides, we
have constructed a η-pseudo Hermitian Hamiltonian [19] to which a subset of the set of
algebra eigenstates associated with Uz,0(h(2)) are the coherent states. From this point of view,
our deformed states are linked to Hamiltonians presenting important physical aspects [31].
Indeed, our pseudo-Hermitian Hamiltonian verifies naturally all the properties of pseudo-
Hermitian Hamiltonians such as the existence of associated biorthonormal basis, resolution
of the identity, positive-definite inner product, physical Hilbert space, unitary and invertible
operators mapping the pseudo-Hermitian operators to the Hermitian ones, etc. Thus, with
the help of pseudo-Hermitian quantum mechanics techniques we are allowed to compute,
for instance, the spectrum, the eigenstates and the associated coherent states of complicated
deformed Hermitian Hamiltonians describing multi-photon processes in a single mode. Also,
we can compute more easily quantities such as mean values of physical observables and
transition amplitudes. Moreover, it could be interesting to know, at least for small values of
the deformation parameter z, the explicit form of the resolution of the identity verified by
the generalized coherent states (119). Indeed, this fact could have important consequences,
for instance, in the study of corrections to the time evolution of the quantum fluctuations
associated with the quadratures of the position and linear momentum of a system characterized
by a Hamiltonian describing one and two photon processes in a single mode [33]. This is a
non-trivial problem and it could be developed elsewhere.

On the other hand, we have found new classes of deformed squeezed states, parametrized
by a real paragrassmann number, i.e., a number z such that zk0 = 0, for some k0 ∈ N. These
states can be normalized, even if z is considered as a complex paragrassmann number. In
this last case, when k0 = 2, we should interpret z as an odd complex Grassmann number
and compare this new classes of deformed squeezed states with those associated with the
η-super-pseudo-Hermitian Hamiltonians [15].
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Appendix A. Solving a paragrassmann valued differential equation

In this appendix we are interested in solving the differential equation[
d

dξ
+ (µξ + ν)

k0−1∑
l=0

(−z)l

l!

dl

dξ l

]
ϕ(ξ) = λϕ(ξ), µ, ν, λ ∈ C, (A.1)

where k0 ∈ N, k0 � 1 and z is a paragrassmann generator such that zk = 0,∀k � k0.

Let us assume a solution of the type

ϕ(ξ) =
k0−1∑
k=0

zkϕk(ξ). (A.2)
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Inserting this solution into (A.1), we get[
k0−1∑
k=0

zk dϕk

dξ
+ (µξ + ν)

k0−1∑
l=0

k0−1∑
k=0

(−1)l(z)k+l

l!

dlϕk

dξ l

]
= λ

k0−1∑
k=0

zkϕk. (A.3)

Identifying the coefficients of independent powers zk, k = 0, 1, 2, . . . , k0 − 1, in this equality,
we get the following system of differential equations (k = 1, . . . , k0 − 1):

dϕk

dξ
+ (µξ + ν)

k∑
l=1

(−1)l

l!

dlϕk−l

dξ l
= [(λ − ν) − µξ ] ϕk, (A.4)

dϕ0

dξ
= [(λ − ν) − µξ ] ϕ0. (A.5)

Let us note that we can solve this system of differential equations proceeding by iteration.
Indeed, from equation (A.5), we get

ϕ0(ξ) = C0 exp
(
(λ − ν)ξ − 1

2µξ 2
)
, (A.6)

where C0 is an arbitrary integration constant. Also, from equation (A.4), for a given value of
k, the general solution ϕk(ξ) is of the type

ϕk(ξ) = [Ck + Ak(ξ)] exp
(
(λ − ν)ξ − 1

2µξ 2
)
, k = 1, . . . , k0 − 1, (A.7)

where the Ck are arbitrary integration constants and Ak(ξ) are functions of ξ which can be
determined by solving the system of differential equations (k = 1, 2, . . . , k0 − 1)

dAk

dξ
= exp

(
1

2
µξ 2 − (λ − ν)ξ

)
× (µξ + ν)

k∑
l=1

(−1)l+1

l!

dl

dξ l

[
(Ck−l + Ak−l ) exp

(
(λ − ν)ξ − 1

2
µξ 2

)]
. (A.8)

Using the Leibnitz’s derivation rule it is easy to prove that

exp

(
1

2
µξ 2 − (λ − ν)ξ

)
dl

dξ l

[
(Ck−l + Ak−l ) exp

(
(λ − ν)ξ − 1

2
µξ 2

)]
=

l∑
m=0

(
l

m

)[
Ck−l (λ − ν)l−m

(µ

2

)m/2
(−1)mHm

(√
µ

2
ξ

)

+
dl−mAk−l

dξ l−m

m∑
s=0

(
m

s

)
(λ − ν)m−s

(µ

2

)s/2
(−1)sHs

(√
µ

2
ξ

)]
, (A.9)

where

Hm(x) = ex2 dm

dxm
e−x2

, m = 0, 1, . . . , (A.10)

are the Hermite polynomials.
Inserting these results into (A.8) and integrating with respect to ξ, we get

Ak(ξ) =
k∑

l=1

l∑
m=0

(−1)l+1

l!

(
l

m

)∫
(µξ + ν)

[
Ck−l(λ − ν)l−m

(µ

2

)m/2
(−1)mHm

(√
µ

2
ξ

)

+
dl−mAk−l

dξ l−m

m∑
s=0

(
m

s

)
(λ − ν)m−s

(µ

2

)s/2
(−1)sHs

(√
µ

2
ξ

)]
dξ, (A.11)
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when k = 1, 2, . . . , k0 − 1. This system of integral equations can be solved by iteration using
the initial condition A0(ξ) = 0. For instance, when k0 � 2, from equation (A.11), we get

A1(ξ) =
[
(λ − ν)νξ + µ(λ − 2ν)

ξ 2

2
− µ2 ξ 3

3

]
C0. (A.12)

When k0 � 3, from (A.11), we get

A2(ξ) =
[(

λ2ν

2
+

µν

2
+ 2λν2 − 3ν3

2

)
ξ

−
(

λ2µ

4
− µ2

4
− 2λµν − λ2ν2

2
+

9µν2

4
+ λν3 − ν4

2

)
ξ 2

+

(
2λµ2

3
+

λ2µν

2
− 3µ2ν

2
− 3λµν2

2
+ µν3

)
ξ 3

+

(
λ2µ2

8
− 3µ3

8
− 5λµ2ν

6
+

5µ2ν2

6

)
ξ 4

−
(

λµ3

6
− µ3ν

3

)
ξ 5 +

µ4ξ 6

18

]
C0

+

(
(λ − ν)νξ + µ(λ − 2ν)

ξ 2

2
− µ2 ξ 3

3

)
C1. (A.13)

Finally, the general solution of the differential equation system (A.1) is obtained by
inserting (A.7) into (A.2)

ϕ(ξ) =
[

k0−1∑
k=0

zk(Ck + Ak(ξ))

]
exp

(
(λ − ν)ξ − 1

2
µξ 2

)
, (A.14)

with Ak(ξ) given in equation (A.11). We note that there exists an independent solution for
each integration constant Ck, k = 0, 1, . . . , k0 − 1.

In the case ν = 0, equation (A.11) reduces to (k = 1, 2, . . . , k0 − 1)

Ak(ξ) = µ

k∑
l=1

l∑
m=0

(−1)l+1

l!

(
l

m

)∫
ξ

[
Ck−lλ

l−m
(µ

2

)m/2
(−1)mHm

(√
µ

2
ξ

)

+
dl−mAk−l

dξ l−m

m∑
s=0

(
m

s

)
λm−s

(µ

2

)s/2
(−1)sHs

(√
µ

2
ξ

)]
dξ. (A.15)

Thus, for instance, from equation (A.15), when k0 � 2, we get

A1(ξ) = µ

(
λ

ξ 2

2
− µ

ξ 3

3

)
C0. (A.16)

When k0 � 3, we get

A2(ξ) =
[(

µ2

4
− λ2µ

4

)
ξ 2 +

2λµ2

3
ξ 3 +

(
λ2µ2

8
− 3µ3

8

)
ξ 4 − λµ3

6
ξ 5 +

µ4ξ 6

18

]
C0

+

(
µλ

2
ξ 2 − µ2

3
ξ 3

)
C1. (A.17)
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In the case µ = 0, equation (A.11) reduces to (k = 1, 2, . . . , k0 − 1)

Ak(ξ) = ν

k∑
l=1

(−1)l+1

l!

[
(λ − ν)l

(
ξCk−l +

∫
Ak−l dξ

)

+
l−1∑
m=0

(
l

m

)
(λ − ν)m

dl−1−m

dξ l−1−m
Ak−l

]
. (A.18)

For instance, from this last equation, when k0 � 2, we get

A1(ξ) = (λ − ν)νξC0 (A.19)

and when k0 � 3, we get

A2(ξ) =
[(

λ2ν

2
+ 2λν2 − 3ν3

2

)
ξ +

(
λ2ν2

2
− λν3 +

ν4

2

)
ξ 2

]
C0 + (λ − ν)νξC1. (A.20)

Appendix B. Matrix elements

In section 4.1, we need to compute the following matrix elements:

�kl = 〈0|D†
(

β eiθ

√
1 − δ2

)
S†(−tan−1(δ) eiφ)a†kalS(−tan−1(δ) eiφ)D

(
β eiθ

√
1 − δ2

)
|0〉,

(B.1)

and

�kl = 〈0|D†
(

β eiθ

√
1 − δ2

)
S†(−tan−1(δ) eiφ)aka†lS(−tan−1(δ) eiφ)D

(
β eiθ

√
1 − δ2

)
|0〉,

(B.2)

with k, l = 0, 1, 2, . . . . Using the relation

S†(−tan−1(δ) eiφ)aS(−tan−1(δ) eiφ) = 1√
1 − δ2

(a − δ eiφa†), (B.3)

we can write them in the form

�kl = 〈0|D†
(

β eiθ

√
1 − δ2

)
(a† − δ e−iφa)

k
(a − δ eiφa†)

l

(1 − δ2)
k+l
2

D

(
β eiθ

√
1 − δ2

)
|0〉 (B.4)

and

�kl = 〈0|D†
(

β eiθ

√
1 − δ2

)
(a − δ eiφa†)

k
(a† − δ e−iφa)

l

(1 − δ2)
k+l
2

D

(
β eiθ

√
1 − δ2

)
|0〉, (B.5)

respectively. From the above expressions, it is clear that

�0l = �̄l0 = �l0 = �̄0l , �ll = �̄ll , �ll = �̄ll, l = 0, 1, . . . , (B.6)

and

�kl = �̄lk, �kl = �̄lk, k, l = 0, 1, . . . . (B.7)

We note that the �kl matrix elements correspond to

∂k

∂σ k

∂l

∂τ l
〈0|D†

(
β eiθ

√
1 − δ2

)
exp[σ(a† − δ e−iφa)]

(1 − δ2)
k/2

exp[τ(a − δ eiφa†)]

(1 − δ2)
l/2 D

(
β eiθ

√
1 − δ2

)
|0〉,

(B.8)
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when σ and τ go to zero. Applying the usual B H C formula to disentangle the exponentials
factors, we get

exp[σ(a† − δ e−iφa)] exp[τ(a − δ eiφa†)] = exp
[
στδ2 − 1

2σ 2δ e−iφ − 1
2τ 2δ eiφ]

× exp[(σ − τδ eiφ)a†] exp[(τ − σδ e−iφ)a]. (B.9)

Inserting this result in (B.8), and acting with the exponential operators on the coherent states,
we get

�kl = 1

(
√

1 − δ2)
k+l

∂k

∂σ k

∂l

∂τ l

{
exp

[
στδ2 − 1

2
σ 2δ e−iφ − 1

2
τ 2δ eiφ

]

× exp

[
(σ − τδ eiφ)

β e−iθ

√
1 − δ2

]
exp

[
(τ − σδ e−iφ)

β eiθ

√
1 − δ2

]}∣∣∣∣∣
σ=τ=0

. (B.10)

The matrix elements �kl can be obtained in the same way. We get

�kl = 1

(
√

1 − δ2)
k+l

∂k

∂σ k

∂l

∂τ l

{
exp

[
στ − 1

2
σ 2δ eiφ − 1

2
τ 2δ e−iφ

]

× exp

[
(σ − τδ e−iφ)

β eiθ

√
1 − δ2

]
exp

[
(τ − σδ eiφ)

β e−iθ

√
1 − δ2

]}∣∣∣∣∣
σ=τ=0

. (B.11)

For example,

�00 = �00 = 1, �01 = �̄01 = β eiθ − βδ ei(φ−θ)

(1 − δ2)
,

�02 = �̄02 = β2 e2iθ − δ eiφ(2β2 + 1 − δ2) + β2δ2 e2i(φ−θ)

(1 − δ2)
2

�11 = �11 − 1 = β2(1 + δ2) + δ2(1 − δ2) − 2β2δ cos(φ − δ)

(1 − δ2)
2 ,

�12 = [β e−iθ (β2 + 2β2δ2 + (2 + δ2)(1 − δ2)) − βδ ei(θ−φ)(2β2 + β2δ2 + 3(1 − δ2))

+ β3δ2 ei(3θ−2φ) − β3δ ei(φ−3θ)]/(1 − δ2)
3
. (B.12)
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